
Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 1 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

Lesson 16
Relocatable Code

Overview

Introduction Trying to use code from previous projects can be very tedious with the absolute code
model discussed so far. Relocatable code helps with these issues.

In this section Following is a list of topics in this section:

Description See Page

Reusing Code 2

What is relocatable code 4

The Linking Process 5

Assembler Directives 6

A Simple Example 8

Sharing Data Locations 11

Re-using File Register Locations 13

Libraries 15

Using a library 16

Further Experiments 18

Wrap Up 19

Lesson 16 Elmer 160
Elmer 160 Lesson 16.doc Relocatable Code

Page 2 of 19 Revised: 04 Mar 2005 - 10:27 AM
John J. McDonough, WB8RCR Printed: 04 Mar 2005 - 10:27 AM

Reusing Code

Introduction One of the very appealing things about programming the PIC is that everything is
absolutely predefined. We tell the assembler precisely what to put in the PIC and
where to put it. This makes PIC programming virtually devoid of the nasty surprises
that we sometimes see in programming in more complex environments.

This absolute determinism has its dark side; when we want to use code from a
previous project, it can become very tedious merging that old code with the new
code. It would be nice if some of the hard work could be automated. That is exactly
what the linker, MPLINK, does for us. However, before we can use MPLINK to help
us, we need to provide clues in our code as to our intentions.

Use of include
files

We have already seen how we can break larger programs apart into several files, and
include those additional files in our assembly. While this can help with organizing
our code, it doesn’ t help with some of the challenges we have when we want to reuse
the code.

If we place a group of routines we want to re-use into an include file, we can avoid
cutting and pasting it into our source file. However, we need to adjust the general
purpose register locations used so as not to clash with our existing program. If the
include file uses names for symbols that are easy to read, we are likely to have also
used those names somewhere else in the program. Finally, if we have a group of
functions in a single include file, the odds are that the next program doesn’ t need all
of the functions. So, we must either waste the memory for those unneeded routines,
or edit the include file to remove those routines. This requires studying, and re-
understanding, the functions to be sure they aren’ t required elsewhere.

Allocating File
Register
Locations

Up until now, we have used the cbl ock directive to identify where we want to place
specific variables in the file register. Normally, we don’ t really care what particular
location we use, we simply don’ t want to inadvertently use that location for
something else. It would be nice if those locations could be allocated automatically.
That way each include file could have its own declarations for general purpose
register usage and somehow they could be magically merged so that they don’ t
conflict with the main programs or other include files.

Allocating
Program Memory
Locations

Program memory generally isn’ t as much of a problem as GP register memory. We
care about what goes into locations zero and four (reset and interrupt vectors), but
beyond that we normally just use one location after another. Including some code
with the include directive follows this model.

Sometimes, though, we care about keeping some program on a particular page.
When we write lookup tables it is simpler to write these tables for the first 256 words
of program memory. If an include file has such a table, getting that to coexist with
tables in the main program, or in other include files, can get messy.

 Continued on next page

Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 3 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

Reusing Code, Continued

Managing
Symbol Scope

Typically, if we write a routine for some particular purpose, the only program
memory label1 within that routine that needs to be known outside the routine is its
entry point. However, if we include the routine through the include directive, all of
the labels in the function have the same priority as the labels in the main program.
We need to ensure that we don’ t have name clashes with any of the labels we have
already used.

The same applies to general purpose (file) register symbols. Within a routine, its
memory use is generally only of concern to the routine itself. Occasionally we may
pass parameters into the routine or results out of the routine with the GP registers,
and these symbols would need to be known outside the function. But for the most
part, general purpose register use tends to be local to a particular routine.

Reusing file
register
locations

On the PIC16F84A, there are only 56 general purpose register (GPR) locations. As
we pointed out in the previous section, the use of these locations tends to be local to a
particular function. To reuse those locations for other functions we tend to name
those scratch locations with names like temp, temp1, scratch, or some other
innocuous name. This makes our program harder to read since we can’ t use
meaningful names that might be different across routines. We could equate another
symbol to that address, but now we have built ourselves a trap for when we add the
next include file.

1 To be picky, we generally refer to a label as something that we wrote in column 1 of the source. These become
symbols in the assembler result for a relocatable assembly, but the “symbol” is a slightly broader term that encompasses
not only our program and data labels, but also some other symbols generated by the assembler that might not be visible
in our program source. For now, it is helpful to think of a symbol as simply a tag for something in the program that
might need to be referenced later. It only becomes important now because when we were doing absolute assembly, there
was no “ later” . Now there is.

Lesson 16 Elmer 160
Elmer 160 Lesson 16.doc Relocatable Code

Page 4 of 19 Revised: 04 Mar 2005 - 10:27 AM
John J. McDonough, WB8RCR Printed: 04 Mar 2005 - 10:27 AM

What is relocatable code

Introduction When we assemble absolute code, the assembler generates a hex file that contains
exactly the code that will be loaded into the PIC. If we want the linker to be able to
move that code around, any addresses need to be somehow marked so that the linker
knows to fix them up. This includes both program and GPR locations. There might
even be different ways of handling different symbols.

Local and Global
symbols

If we are going to be able to call a routine that wasn’ t included in the current
assembly, the assembler needs to be told that the routine’s name is going to be found
somewhere else. Similarly, when that routine is assembled, the entry point needs to
be marked so that the assembler knows that the routine’s entry point is a symbol that
needs to be exposed to the outside; that is, the symbol is global. Any other symbols
can be made local, which means that they are only known within the current
assembly, and can’ t be accessed by other routines.

Program
Sections

A relocatable program is broken up into a number of program sections. These
sections each contain code with different rules for where it may be placed. The
section may also have a name.

Most of the time we won’ t give a section a name, so the assembler will provide a
name for us. By default, our program code goes into a section named . code and our
data goes into a section named . udat a. The assembler also provides default names
of . conf i g where the configuration data is stored (H’2007’), eedat a where the
EEPROM data is stored (H’2100’), and . i dl ocs where the ID data is stored
(H’2000’). (We haven’ t mentioned the ID locations but they are simply a place
where we can store things like the version number of a program so we can easily
identify a programmed PIC. And your author has no idea why Microchip chose to
put a dot before everything except eedat a.)

Assembler
Output

When we assemble an absolute program, the assembler outputs a .hex file. This file
contains exactly the code to be written to the PIC, in a format readable by the
programming software.

When we build relocatable code, the assembler outputs a .o (object) file, which
contains the assembled codes like the .hex file, but whenever an address is
referenced, the file contains rules for the linker to resolve that address. The linker
can then take that output, along with other .o files, and link them together to get the
.hex file to load into the PIC.

Suppose, for example, we have code like:
Loop
 i ncf sz abc, F
 got o Loop

In an absolute assembly, the assembler would know the address of Loop and could then
assign that address as the target of the got o. When we are generating relocatable code,
however, the address of Loop is not known. Instead, the assembler outputs the offset
of Loop from the front of the program section, along with instructions to the linker to
add the starting address of the section to the address of Loop.

Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 5 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

The Linking Process

Introduction When making relocatable code, the developer has the option to break the program
into any number of individual files. The programmer could choose to keep the entire
program in a single file. However, it is often better to have a separate file for each
subroutine in the program. Sometimes it may make sense to have several related
routines in one file. The linker now has the task of linking these files together to
make the final .hex file.

Linking in
MPLAB

When we create a project in MPLAB, somehow MPLAB needs to know whether it
should create relocatable code or absolute code. So far, we have always ended up
with absolute code.

However, if we were to add more than one .asm file to the project, MPLAB2 detects
that we are going to have to link those files together, and would generate relocatable
code. In addition, MPLAB will try to link those assemblies together. However, it
does not have enough information to do this.

The Linker Script Before the linker can piece together all the bits of our program, it needs to know what
to do with the various program sections. The linker script tells the linker what to do
with the program sections. The default linker script simply gives the linker a map of
the hardware for the particular PIC.

The linker script takes a bit of thought. Fortunately, we can almost always steal an
already prepared linker script. In the MPLAB program directory, in the
subdirectory3:

MCHI P_Tool s\ LKR

will be found a series of linker scripts, one for each processor. We can simply add
the linker script for our processor to our project under the “Linker Scripts” heading.4

This works just like adding source files. Right-click on Linker Scripts, select Add
Files…, and navigate to the linker script directory.

2 This applies only to MPLAB version 6.x. In earlier versions of MPLAB, the linker must be specifically called out in the
project properties. In 7.x, we must have a linker script for MPLAB to realize it must call MPLINK.

3 For MPLAB 4.x, these scripts are in the install directory. In 5.x, they are in LKR under the install directory, in 7.x, they
are in Mi cr ochi p\ MPASM Sui t e\ LKR.

4 Again, this is different for earlier versions.

Lesson 16 Elmer 160
Elmer 160 Lesson 16.doc Relocatable Code

Page 6 of 19 Revised: 04 Mar 2005 - 10:27 AM
John J. McDonough, WB8RCR Printed: 04 Mar 2005 - 10:27 AM

Assembler Directives

Introduction When we write a program targeted at generating relocatable code, there are a few
differences in the directives we use. In this section, we will talk about the most
commonly used directives.

The code
directive

When we want to write instructions to be placed in the PIC’s program memory, we
need to precede those instructions with a code directive:

 code
St ar t
 movl w H’ 01’
 movwf Count

The code directive tells the assembler that the following code belongs in the program
section containing instructions. Because we didn’ t include a name in front of the
code directive, the assembler assumes that we don’ t have any special concerns about
how this code is handled. If we wanted, for some reason, to group these instructions
together with some instructions from another file, we could assign a name to the code
segment:

MySeg code

This is generally only interesting for processors with over 2K of program memory.
got o and cal l statements which cross 2K boundaries require an extra instruction,
and a group of routines with many references between them may want to be grouped
together to avoid this.

There is a special code segment named STARTUP that resides at location zero. We
normally have a got o instruction there so we might do something like:

STARTUP code
 got o St ar t

There are a few cases where we care about where a particular piece of code goes. In
this case, we can assign an address to the segment:

Tabl e2 code H’ 0200’

In general, this should be avoided. However, sometimes it can be used to avoid
editing the linker script, which can be somewhat tricky.

The udata and
res directives

What code does for instructions, udat a does for GPR addresses. udat a stands for
uninitialized data. Up until now, we have set aside GPR locations with the cbl ock
and cend directives. These don’ t really reserve memory for us, they merely assign
sequential values to symbols so that we can easily refer to them. The r es directive
actually reserves places in the file register for us:

 udat a
Var 1 r es 1
Var 2 r es 1

The value after the r es indicates how many bytes to reserve. Like the code
directive, we can assign a name and/or an address with the udat a directive. By
default, space is allocated beginning at the first available GPR location and the
section is named . udat a.

 Continued on next page

Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 7 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

Assembler Directives, Continued

global and extern With the directives so far, we could put together a working program using relocatable
code. However, the program would need to be entirely within one file, because the
symbols are all local. If we try to reference something in another file, the assembler
will complain that the symbol is undefined.

The gl obal directive tells the assembler to make a symbol available outside this file.
 gl obal MySub
 code
MySub xor l w H’ 05’

While the ext er n directive tells the assembler that the symbol mentioned will be
resolved later by the linker:

 ext er n MySub
 code
 cal l MySub

Both directives may list several symbols:
 ext er n LCDi ni t , LCDl et r , LCDcl ear

These directives may be placed almost anywhere, but it is best to place them near the
front of the file. That way, the reader can quickly see what capabilities this file
provides to the rest of the world (gl obal) and what external assets it relies on
(ext er n).

Additional
Directives

There are quite a number of other directives which are available, but most are rarely
used. Of interest when we are pressed for GPR space is the udat a_ovr (overlaid
data) directive which allows us to share GPR locations between program sections
without sharing the symbols. The udat a_shr (data shared among banks) directive
forces GPR locations into the top 16 locations, which is important on PICs with more
than 96 file register locations. The i dat a directive, in combination with the dat a
directive, provides for initialized data.

Other than udat a_ovr however, these directives aren’ t commonly used, and most
programs can get along with the five directives, code, udat a, r es , gl obal and
ext er n.

We will do an example with udat a_ovr , even though it is a fairly uncommon
directive.

The udat a_shr directive is not available on the PIC16F84A because the chip
doesn’ t have the shared GP register hardware5. The i dat a directive is probably
more complicated than it is worth, and is mostly intended to help with implementing
higher level languages like Pascal. We will not cover either of these in this lesson.
They are only mentioned here in because the student will see them in the assembler
documentation.

5 On some newer PICs, especially newer 16C parts, Microchip has chosen to define the entire GPR space of the part as
“share” . The GPR behavior of these parts is identical to the F84, so this can be a cause of some confusion. This
treatment can be changed by editing the linker script file, but the developer is cautioned to review the datasheet carefully
when using a new part.

Lesson 16 Elmer 160
Elmer 160 Lesson 16.doc Relocatable Code

Page 8 of 19 Revised: 04 Mar 2005 - 10:27 AM
John J. McDonough, WB8RCR Printed: 04 Mar 2005 - 10:27 AM

A Simple Example

Introduction In this section, we will make a trivial program using relocatable code. We will see
how the gl obal directive can make a label available for the ext er n directive.

Setting up the
project

Create a project, Less16a, just like you have done many times before. However, this time,
make two .asm files, Less16a.asm, and Less16a1.asm. Include both of them in your
project.

Right click on “Linker Scripts” and select “Add Files…” just like you do for Source
Files. (See the figure on page 5). Navigate to your MPLAB directory, and then to
MCHIP_Tools and finally, LKR, and select 16f84a.lkr.6

Adding code to
our subroutine

In Less16a1.asm, we will add the code for our subroutine. In this case, we really just
want to demonstrate linking, so we really don’ t need much fancy in this subroutine.
Let’s just do something that complements whatever is in the W register:

 gl obal aSub

 code
aSub
 xor l w h' f f '
 r et ur n

 end

Notice that our entry point, aSub, has been made available to the rest of the world
through the gl obal directive.

We can only include the __conf i g directive once per program, so it is best to put it in
the mainline and not here. We also didn’t need anything from the processor include file.
Rather than introduce an unnecessary dependency, we have omitted it here. The reader is
cautioned, however, that lacking this include can produce some troublesome errors.

The mainline Now, lets add some code to the main program, Less16a.asm, to put something into
the W register, call aSub, and then store the result in the file register.

 pr ocessor pi c16f 84a
 i ncl ude p16f 84a. i nc
 __conf i g _XT_OSC & _WDT_OFF & _PWRTE_ON

 ext er n aSub
 udat a
var 1 r es 1

STARTUP code
 got o St ar t

 code
St ar t
 movl w h' 17'
 cal l aSub
 movwf var 1

aa got o aa
 end

 Continued on next page
6 In earlier versions of MPLAB, you must highlight the .hex file in the Edit Project dialog, and click on “Node Properties” .

You must then select MPLINK as the “Language Tool” . You must also provide the name of the .lkr file in the “Additional command
line options” . The location of the default .lkr files is different in different versions of MPLAB other than 6.x.

Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 9 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

A Simple Example, Continued

Assembling When we click on the build button, notice that the assembler runs twice, once for
each .asm file. Then some other programs run, including the linker. The other two
programs convert the linker output to a .hex file for loading into the PIC, and also to a
.cod file for simulation. These are the same files that are produced when we do an
absolute assembly.

Simulating the
program

If we choose MPLAB SIM as our simulator and step through the program, we will
see that there are no nasty surprises – the program executes as we would expect, and
the result gets deposited in location h’c’ in the file register, just as if we had used a
cblock to define var1.

 Continued on next page

MPASM

.asm

.asm .asm

.cod

.cod

.hex

.hex

.cof

.o .o

MPASM MPASM

MPLINK

MP2COD MP2HEX

Absolute

Relocatable

.hex file for
programmer

.cof “Common
object format”

.o “object” file

.cod file for
simulator

Lesson 16 Elmer 160
Elmer 160 Lesson 16.doc Relocatable Code

Page 10 of 19 Revised: 04 Mar 2005 - 10:27 AM
John J. McDonough, WB8RCR Printed: 04 Mar 2005 - 10:27 AM

A Simple Example, Continued

Seeing where
things got placed

Go to the Project menu, and select Build Options and then Project. Select the
MPLINK Linker tab in the dialog that comes up, and check the “Generate map file”
check box.7 Now re-build the project.

Go to File->Open and in the “Files of type” dropdown select Map Files. Then open
Less16a.map.

Scrolling down to “Symbols – Sorted by Address” we can see how the linker decided
to place things in memory. The “Start” symbol ended up at location H’7’ . The loop
at “aa” ended up at h’a’ . If you count instructions from Start you will see that makes
sense. Since “aa” was the last location in our mainline, and “aSub” was the first
location in our subroutine, aSub ends up at h’b’ , right where you would expect it.
The only variable in our program, “var1” , got placed at the first available file register
location, h’c’ .

0000

0007 Start

aa

aSub

000d

000e

STARTUP

.code

Less16a

Less16a1

Note that the order might be different, depending on how files were added to the
project, and whether you have a slightly different version of the linker. The actual
order really doesn’ t matter all that much since all the addresses get fixed to reflect
how things really turned out.

7 In earlier versions of MPLAB, you must select Edit Project from the Project menu. Then highlight the .hex file and click
on “Node Properties” . Check “Map file” to cause the linker to create a map file, and in versions prior to 5, you must
provide a name for the map file.

Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 11 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

Sharing Data Locations

Introduction In the previous example, we saw how the ext er n directive could tell the assembler
that a symbol would be resolved elsewhere, and how the gl obal directive could
make a symbol available outside the assembly. This allows us to make subroutines
which are independent of the routines that call them.

However, it is also possible for a routine to make its data global, and thus shareable
with other routines. In this example, we will use a pair of routines to store and
retrieve a bit of data in a location hidden from the calling program

Less16b This time we will use a mainline and two subroutines. Again, create a project,
Less16b, and add the .lkr file just like in the previous example. Our mainline will
load a value into W, call a routine, then clear the W and call another routine:

 pr ocessor pi c16f 84a
 i ncl ude p16f 84a. i nc
 __conf i g _XT_OSC & _WDT_OFF & _PWRTE_ON

 ext er n Sub1, Sub2

STARTUP code
 got o St ar t
 code
St ar t
 movl w h' 3a'
 cal l Sub1

 c l r w
 cal l Sub2

aa got o aa

 end

Notice that we will declare the two subroutines ext er n, just as we did with the one
routine in the previous example.

The Subroutines The first subroutine uses a file register location to save the data, much like the earlier
example. However, Less16b1.asm declares that location gl obal :

 gl obal Sub1
 gl obal Shar ed

 udat a
Shar ed r es 1

 code
Sub1
 movwf Shar ed
 r et ur n

 end

 Continued on next page

Lesson 16 Elmer 160
Elmer 160 Lesson 16.doc Relocatable Code

Page 12 of 19 Revised: 04 Mar 2005 - 10:27 AM
John J. McDonough, WB8RCR Printed: 04 Mar 2005 - 10:27 AM

Sharing Data Locations, Continued

The Subroutines
(continued)

The second subroutine, Less16b2.asm, does not declare a udat a section. Instead, it
declares as ext er n the variable made gl obal by Less16b1.

 gl obal Sub2
 ext er n Shar ed

 code
Sub2
 movf Shar ed, W
 r et ur n

 end

Assembling and
simulating

When we assemble and link this program, it is worth looking at the map:
 Symbol s - Sor t ed by Name
 Name Addr ess Locat i on St or age Fi l e
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 St ar t 0x000007 pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson16\ Less16b. asm
 Sub1 0x00000c pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson16\ Less16b1. asm
 Sub2 0x00000e pr ogr am ext er n C: \ Pr oj ect s\ PI C\ Lesson16\ Less16b2. asm
 aa 0x00000b pr ogr am st at i c C: \ Pr oj ect s\ PI C\ Lesson16\ Less16b. asm
 Shar ed 0x00000c dat a ext er n C: \ Pr oj ect s\ PI C\ Lesson16\ Less16b1. asm

Notice that there is only one memory location reserved for the variable Shared, and it
is the one declared by Less16b1. If we were to simulate this program and step
through it, there would be no surprises.

Re-use In this example, again we left off the pr ocessor and i nc l ude statements from our
subroutines. This actually requires a certain amount of thought. Much of the time we
cannot omit the i nc l ude because there are symbols in that file that we need. For
example, the definitions for PORTA, I NDF, and the various configurations bits are all
provided by the processor include file.

However, when we are building relocatable code, it is much easier to use our routines
in other programs than it is when we are building absolute code. Since different PICs
are very similar, we might very well want to re-use our subroutines on a project with
some other processor. As a result, we may want to avoid any unnecessary
dependencies on a particular PIC model.

Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 13 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

Re-using File Register Locations

Introduction In the previous example, two routines shared a file register cell, because they needed
to share information. However, very often, a subroutine’s file register use is
temporary. Once the routine exits the memory is no longer needed. It would be
handy if several subroutines could re-use the same block of memory.

This is exactly what the udat a_ovr directive is for.

udata_ovr The udat a_ovr directive specifies that we are to reserve general purpose register
locations, just like the udat a directive. However, it allows any other routine which
specifies a udat a_ovr section of the same name to share these memory locations.
As a result, the linker will assign all of these to the same memory location.

A udata_ovr
example

In this example, we will write two delay routines, pretty much identical except that
they will use different names for their loop counters. The loop counters will be
stored in a udat a_ovr section named Count er s. The first subroutine,
Less16c1.asm:

 gl obal Sub1

Count er s udat a_ovr
Loopc1 r es 1
Loopc2 r es 1

 code
Sub1
 movl w 5
 movwf Loopc1
Loop1
 movl w 3
 movwf Loopc2
Loop2
 decf sz Loopc2, F
 got o Loop2
 decf sz Loopc1, F
 got o Loop1

 r et ur n
 end

Notice that we have a section named Counters and we have reserved two locations
for our loop counters, Loopc1 and Loopc2. We have made the subroutine entry point
global, just as in the previous examples.

 Continued on next page

Lesson 16 Elmer 160
Elmer 160 Lesson 16.doc Relocatable Code

Page 14 of 19 Revised: 04 Mar 2005 - 10:27 AM
John J. McDonough, WB8RCR Printed: 04 Mar 2005 - 10:27 AM

Re-using File Register Locations, Continued

A udata_ovr
example
(continued)

The second routine, Less16c2.asm, will be virtually identical, except it will have a
different name, and it will use the creatively renamed loop counters, Loopc3 and
Loopc4. However, the section name will be the same:

 gl obal Sub2

Count er s udat a_ovr
Loopc3 r es 1
Loopc4 r es 1

 code
Sub2
 movl w 5
 movwf Loopc3
Loop1
 movl w 3
 movwf Loopc4
Loop2
 decf sz Loopc4, F
 got o Loop2
 decf sz Loopc3, F
 got o Loop1

 r et ur n
 end

Finally, the mainline will do nothing more than call these two subroutines over and
over:

 pr ocessor pi c16f 84a
 i ncl ude p16f 84a. i nc
 __conf i g _XT_OSC & _WDT_OFF & _PWRTE_ON

 ext er n Sub1, Sub2

STARTUP code
 got o St ar t
 code
St ar t
 cal l Sub1
 cal l Sub2
 got o St ar t
 end

Assembling and
testing

When we build this program, it is probably a little easier to use the animate feature of
MPSIM to test it. But since the two subroutines don’ t use their data at the same time,
nothing inappropriate happens, even though, as we can see from the map, the
variables share the same memory locations:

Loopc1 0x00000c dat a st at i c H: \ PI C\ Lesson16\ Less16c1. asm
Loopc2 0x00000d dat a st at i c H: \ PI C\ Lesson16\ Less16c1. asm
Loopc3 0x00000c dat a st at i c H: \ PI C\ Lesson16\ Less16c2. asm
Loopc4 0x00000d dat a st at i c H: \ PI C\ Lesson16\ Less16c2. asm

A note on
udata_ovr

Notice that each subroutine’s use of the udata_ovr section must stand alone. Because
a subroutine cannot know what might have happened to that memory before, it must
take care to initialize every location it uses before it can count on the contents of that
location.

Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 15 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

Libraries

Introduction So far we have seen how using relocatable code can help us break up our program
into a number of pieces that are somewhat more independent than they are with
absolute code. Much of the dogwork of adjusting memory locations is handled by the
linker. But some of the real power of this technique becomes evident when we use a
library.

What is a
library?

In it’ s simplest terms, a library is simply a collection of already assembled routines
that haven’ t yet been linked, and are stuck together all in one file. A library is a
convenient way to package a group of subroutines that have something in common.
For example, in the next experiment, we will use a library that contains a group of
routines that manipulate the LCD.

Why a library? As we begin to do more and more PIC projects, we discover ourselves solving the
same problem over and over. The LCD is the stereotypical case. Probably half the
PIC projects out there are nothing more than a PIC, an LCD, and some sort of input
circuitry.

While the LCD is classic, we could see similar situations in code for the DDS, for
communicating with general I2C devices, for extended precision math, for Morse
generation, and on and on.

Often, handling some particular subject requires a number of routines to work in
concert. The library provides a convenient way to package a group of related
routines, and keep them handy to be used in future projects.

How it works When we use a library, the linker does some special things. During linking, the
linker sticks together all the object files we mention in the project, and resolves any
references between them. Only then does it go looking into the library, and it
retrieves only those object modules which include symbols which are unresolved.

The linker uses those modules to resolve any unresolved references from the
program. However, those modules may have references to other modules. So the
linker now goes back to the library (or libraries) again to find the routines needed to
resolve those references. It keeps repeating this process until all the loose ends are
tied up.

As a result of this, the linker will collect anything we need from the library, and
nothing else.

The linker looks at the object files in the project first, then the libraries, in the order
the libraries are listed in the project. This allows us to override individual library
modules with our own code without modifying the library.

In the example, we will look at how all this actually happens.

Lesson 16 Elmer 160
Elmer 160 Lesson 16.doc Relocatable Code

Page 16 of 19 Revised: 04 Mar 2005 - 10:27 AM
John J. McDonough, WB8RCR Printed: 04 Mar 2005 - 10:27 AM

Using a library

Introduction In this section, we will do another simple program. This time, however, we will use a
library to provide some other routines.

Setting up the
project

Set up a Less16d project with only one source, Less16d.asm, but don’ t forget to
include 16f84a.lkr as you did in Less16a. Copy LCDlib.lib from the Lesson16.zip
file to your project directory. Right click on Libraries in your project window, and
add LCDlib.lib to the project.

The project
source

This time the source will start like any other, with our pr ocessor , i nc l ude, and
__conf i g directives. We are going to use two routines from the library. The first,
LCDi ni t , initializes the LCD so it will accept commands. The second, LCDl et r ,
displays a letter on the LCD:

 ext er n LCDi ni t , LCDl et r

The actual work will be done by calling LCDi ni t , then loading a character into the
W register and calling LCDl et r to display that character:

 ; I ni t i al i ze t he LCD
 cal l LCDi ni t

 ; Put somet hi ng on t he LCD
 movl w ' 2'
 cal l LCDl et r

We will put our tight aa goto aa at the end to prevent the program from running off into
the weeds when it is done, and assemble the program and load it into the PIC-EL.

What just
happened?

If you make a map and look at it, you will see that quite a few routines got included,
even though we only asked for two. In fact, LCDinit calls a routine that calls a
routine, and so on. We didn’ t need to concern ourselves with any of this, because the
linker took care of it for us.

LCDinit

Del2ms LCDsndI Del40us

Del450ns

LCDletr

LCDsndD

 Continued on next page

Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 17 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

Using a library, Continued

What just
happened?
(continued)

Let’s look in a little more detail at just what the linker went through.

First, it took Less16d.o, the first object file in our project. (In this case, it happens to be
the only object file). Our object file defines two sections, STARTUP and . code. The
linker also knows about the . ci ni t section that is described in the linker script. The
linker always tries to put a . ci ni t section in there, even if we don’ t need it. . ci ni t
is always at least two words long.

Our STARTUP section must be placed at location H’0000’ , so the linker places it there.
The code is only one word long (which shows as two bytes on the map). However, the
linker script tells the linker that locations H’0000’ through H’0004’ are reserved for
STARTUP, so the first available location is H’0005’ . The linker places . ci ni t there.
This makes the next available location H’0007’ (since . ci ni t is two words long), so
that is where the linker places . code.

Now the linker looks at the symbols. There are three symbols in the list ... St ar t ,
LCDi ni t , and LCDl et r . The linker has just placed St ar t at H’0007’ , so it can go
back to the got o St ar t instruction, and assign H’0007’ as the target of the got o. We
have told the linker, via the ext er n directive, that LCDi ni t and LCDl et r are
external, so it is content for now that it doesn’ t know the targets of those two cal l
instructions.

Now that the first object file has been processed, the linker is left with two symbols that
are unresolved. It now moves on to the next object file. But in this case, there is no
‘next’ object file. Having completed all the object files, it moves on to the first library.

Looking through LCDlib, the linker discovers that the symbol LCDi ni t is found in the
module LCDi ni t so it loads LCDi ni t next. The next available location is H’0000b’ ,
so that is where it ends up. The linker now adds the symbols in LCDi ni t to its list of
symbols that need to be dealt with. These include LCDsndI , Del 2ms, and Del 40us.
(There is also a reference with no name within LCDi ni t , _. code_0008).

Now it looks at it’s updated symbol list to see what can be crossed off. It discovers that
it can now fix up the cal l LCDi ni t instruction to call location H’000b’ , so it makes
that fixup and crosses LCDi ni t off it’s list of missing things.

Now it repeats the process of looking for things it needs in the library, next discovering
Del 2ms, which it places at the next available location, H’0023’ .

While it is doing this, it also is doing the same thing with data locations. It turns out
that Del 2ms and Del 40us need two general purpose register locations each, and
LCDi ni t , LCDsend, and LCDl et r need one location each, which happen to be shared
(H’10 in the GPRs).

If all the possibilities in LCDl i b were exhausted and there were still unresolved names,
the linker would now move on to the next library. But in this case, there is only one
library, and all the loose ends are tied up, so the linker can call it a day.

Lesson 16 Elmer 160
Elmer 160 Lesson 16.doc Relocatable Code

Page 18 of 19 Revised: 04 Mar 2005 - 10:27 AM
John J. McDonough, WB8RCR Printed: 04 Mar 2005 - 10:27 AM

Further Experiments

Introduction We have used two routines from the twenty that make up the LCDlib library. The
student may want to explore some of the other routines.

LCDlib.inc Included with the sources is an include file, LCDlib.inc. This file contains ext er n
directives for the routines in the library. For the most part, the names of the routines
are self-explanatory. The student may want to explore some of these routines.

LCDdig On the map for Less16d, the routine LCDdig showed up, even though it wasn’ t
called. LCDdig is actually another entry point in LCDletr. The ASCII representation
for the digits 0 through 9 is actually the digit, plus a H’30’ . Were we to call LCDletr
with a H’6’ , for example, instead of seeing the digit 6, we would see a special
character. LCDdig simply adds H’30’ to the W register and falls through to LCDletr.

LCDaddr LCDaddr allows the caller to position the next character to be displayed. Thus, if one
were to place a 4 in the W register and call LCDaddr, then a call to LCDletr would
cause the character to be placed at the fifth character position on the display (the
addresses start at zero).

For those PIC-EL’s with the 8 character display, this works as expected. However,
the “16 character” display on some PIC-EL’s is actually a 2 line by 8 character
display, so characters won’ t show up on the right half of the display. If you look at
LCDmacs.inc in the library source zip you will get some clues as to how to write to
the second line of the display.

Del1s When you are experimenting, it is handy to slow things down so you can see what is
displayed. Del1s simply waits around for about a second so you can see what is on
the display.

LCDmsg LCDmsg is a tricky one, but useful. If you prepare a buffer in the file register that
contains ASCII text, preceded by a length, place the address of that buffer into the W
register, and then call LCDmsg, the message will be displayed. This routine handles
the 8/16 character display issues.

Other Routines There are a number of other interesting routines in the library. Most have relatively
obvious names. If simply guessing how they work doesn’ t end up with good results,
the sources are included for your study.

Elmer 160 Lesson 16
Relocatable Code Elmer 160 Lesson 16.doc

Revised: 04 Mar 2005 - 10:27 AM Page 19 of 19
Printed: 04 Mar 2005 - 10:27 AM John J. McDonough, WB8RCR

Wrap Up

Summary In this lesson, we have examined how create relocatable code, and how we can use it
to make it easier to re-use code that we have written. We have used a library, and
were able to perform relatively complex operations while writing very little code, by
taking code from a library.

Coming Up In the next lesson, we will study the LCD and see how the routines in the LCD
library were developed.

